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§1. INTRODUCTION

The present paper is concerned with propagation of chaos problems for
systems with an infinite number of degrees of freedom such as strings or
spatially extended neurons. The investigation of the asymptotic behavior of
the voltage (membrane) potentials of large assemblages of interacting neurons
leads to precisely such problems and provided the immediate motivation for the
work. Another example to which the approach of the present paper could be
applied (we believe) is the Ginsburg-lLandau model in hydrodynamics recently
studied by T. Funaki [4].

Sections 2 and 3 are of an introductory nature. Basic properties of duals
of nuclear spaces (denoted throughout by ¢°', the strong dual of a countably
Hilbertian nuclear space ¢) are briefly discussed and the results of Kallianpur
et al. [8] on the existence and uniqueness of the solution to (the martingale
problem posed by) a ¢'-valued stochastic differential equation (SDE) is
extended to a system of such equations. The principal results in which the
infinite dimensionality of our problem call for special arguments are derived
in Sections 3, 4, and 5.

In Theorem 4.1, the weak compactness of the sequence of empirical measures

n
p(w,*) = L 20 (*) is established and it is shown in Section 6 (Theorem
n n n

5=1 X5(-.0)

6.1) that n,. the law of un(m.~) converges weakly to the unique solution of the
McKean-Vlasov equation.

The infinite dimensional (nucelar space-valued) version of the
McKean-Vlasov SDE is introduced in Section 5. The existence and uniqueness of
solution of this equation is investigated in detail in Baldwin et al. [1]. In
view of the importance of this result for the propagation of chaos, a slightly

different proof (with a somewhat stronger conclusion) is given for the special
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choice of the interaction term for our problem. The main results on the
propagation of chaos are given in Theorems 6.2 and 6.3. The existence of a
unique solution to the martingale problem posed by the system (3.2.1) ard
Theorem 5.1 on the McKean-Valsov equation are the key steps that enable
Sznitman's technique for finite dimensional SDE’s to be used for the nuclear
space valued case.

The application, alluded to above, to the voltage potentials or
interacting, spatially extended neurons is considered in Section 7. For
reasons of spuce we have limited ourselves to the mathematics of the problem
and excluded any discussion of the neurophysiological implications.

In Section 8 we introduce the assumption that the initial measure of the
system (3.2.1) is uo—chaotic and show that the results of the previous sections
hold under this more general condition. This is of importance in application
since it is more reasonable to assume (as in the case of the neurons) that the
random variables X?(t),...,Xﬁ(t) are exchangeable than that they are
identically distributed.

It is worth remarking that our results contain the finite dimensional
results as a particular case and their relationship with other available
results (e.g. Sznitman [16]) is also briefly commented upon.

An cutstanding problem, to which we hope to return in a later paper, is
that of proving a fluctuation or central limit theorem. The difficulties that
lie ahead are foreshadowed in a recent paper by Kallianpur and Mitoma [7] that

establishes such a result under restrictive conditions.

§2. PRELIMINARIES ON NUCLEAR SPACES AND ¢'-VALUED SDE's.

In this section we provide the basics on nuclear spaces and on stochastic

processes and integrals taking values in duals of nuclear spaces followed by
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the results of Kallianpur, Mitoma and Wolpert [8] on the existence and

uniqueness of solutions of SDE’s.

2.1 Nuclear spaces

Let ¢ be a real linear space whose topology is given by an increasing
sequence H-Hr. r=1,2,... of Hilbertian norms. Let ¢r be the completion of ¢
with respect to ”.”r' Then ¢ is called a countably Hilbertian nuclear space

(CHNS) if the following two conditions are satisfied:

o
(1) ¢= N,
r=1

(ii) For each r, there exists an m>r such that the canonical embedding ¢mC ¢r
is Hilbert-Schmidt.
Let ¢' denote the strong dual of ¢ whose topology is given by the

following family of semi-norms:

Ile = sup |f(x)| where B C ¢ is a bounded set in ¢.
X€B
[+ ]
It is well known that ¢' = U ¢_r where ¢_r is the dual of ¢r. Besides, the
r=1

strong topology on ¢' coincides with the inductive limit topology induced by
the canonical embeddings ¢_ C $'. Let liel_. denote the norm in ¢_ . If j_
denotes the canonical mapping of ¢r onto its dual ¢_r. then for u € ¢-r and

$ €O,

u(¢] = <u.jr¢)_r = <J_r.u.¢)r
where < * > denotes the inner product in the appropriate space.

For any T>0, éT, denotes the space of all continuous functions from [0,T]

to ¢'. If {I-Ia: a € A} is the set of semi-norms defining the strong topology

of ¢', then by defining mxma = sup lx xecl. , the space CI. is seen as a

0<t<T ¢ %

-
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completely regular topological space under the projective limit topclogy of
{I-Ia: a € Aj. C¢. denotes the space of all continuous functions from [0,®) to

¢, Cg is the Banach space with the uniform topol:zy, consisting of all
-8

continuous functions from [0.T] to ®_,-

2.2 ¢'-valued processes.

Let (2.%.(% P) be a stochastic basis satisfying the usual hypotheses.

t)tzo'

Definition: An adapted ¢'~valued stochastic process{Mt};zo is called a
martingale with respect to (gt) if for each ¢ € ¢, {Mt[¢]}t20 is a real-valued
(gt) martingale. {Mt} is called an L2-martinga1e if EMt[ﬂz(m for all t20 and
PED.

For a detailed discussion of ¢'-valued martingales and their properties we

refer the reader to [6] and [12].

Definition: A continuous ¢'-valued process {wt}t>0 is called a Wiener process

with covariance Q, if the following conditions are satisfied:

(1) WO=O a.s.
(ii) {Wt[¢]) is a one-dimensional Wiener process with variance parameter
Q(¢.¢4). where Q(+.*) is a continuous positive definite symmetric bilinear form
on $.

A result of Mitoma [13] implies that any ¢'-valued Wiener process W has

paths that lie in the Banach space C¢
-q

in the ¢_q-topology P-a.s. The choice of q depends only on the covariance form

for some q<{®, and which are continuous

Q. Letr 2 q be a fixed integer. An important property of the quadratic form

Q is that it admits a unique continuous extension to a nuclear form on ¢r and

%
Qle.v] = (¢.Q¥) . = (Q¢.Q ¢)_ (2.2.1)
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for a unique non-negative trace-class operator Qr on ¢r. The trace norm of Q

. on ¢r (or, equivalently, of Q:) is given by

o] §Q[h;.h§] (2.2.2)

-r,-r

where {h;) is a CONS for ¢r.

2.3 Stochastic integrals in ¢'

Let (Wt} be a ¢'-valued Wiener process with covariance form Q(-.,-) and let
L($'.9') be the space of all continuous linear operators from ¢' to ¢'.

For each T>O and ¢ € ¢, let L% denote the space of progressively
measurable processes H: R x? — L(¢',9") for which Efg Q[H:¢.H:¢]ds { ®, where

H: is the operator dual to Hs.

Definition: The stochastic integral If t= [QH dW_ (0¢s<T) s a ¢'-valued

L2—martingale with the quadratic variation process as <IH)t[¢.¢]=I8 QH [¢.v]ds
s

where Q. [4.¥] = Q[H.¢.H_¢].
S

There exists an 20, depending on H and T such that L. € cg a.s.. If
e
{hg} C ¢ is any CONS in ¢_e.
H t ot 8 )
1041 = STH AW [4] = jflfo(Hs¢.hj)edWs[hj] (2.3.1)

where the right hand side is an L2-convergent series of Itd integrals.

Besides,
H iy ) ) 2. e
@[99 = §=1f8 (Hy$.h),(H ¢.h{)ds Q[hy.h,] (2.3.2)

2.4 ¢'-valued SDE's.
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We give below the result of Kallianpur, Mitoma and Wolpert [8] on the
existence and uniqueness of solutions of stochastic differential equations.
For a probability measure Hy on ¢’ and a pair of functions

At R x¢" — ¢’ and B: R xp* -- L(¢':¢'), consider the following SDE:

dX A(t,xt)dt + B(t’xt)dwc]

t

Xo

(2.4.1)

X(0)

where XO is a ¢'-valued random variable with law of Xo given by Ho» and W is a
¢'-valued Wiener process with covariance form Q.

Let en%m') consist of all functions f: ' —s P with £(u) = f(u[¢]) where
f € C%(R) and ¢ € ¢. The operator Ls is defined as follows: For each

2 L]
f € %b(¢ ).

1~"

Lyf(u) = £ (u41)A(s.u)[#]+ 3F"(u[61)Q(B"(5.u)4.B"(s.u)¢)

where B*(s,u) : ¢ — ¢ is the adjoint of B(s,u), i.e., for all v € ¢' and

¢ € 9,
»*
v[B (s.u)¢] = B(s.u)v[¢].
Let 2 = C,., 9. = Borel o-algebra of C.., and ¥ = V 3_ and let
¢ t ¢ t
t20
LIRS C¢.—4 ¢' e the canonical process defined by Ty = y(t) for all yeC_,.

If per(CE ), then pr '(A)=u(y € Ck  : y € A), A € %(6 ).
LN t ® t -k

Definition: A solution to the martingale problem posed by (2.4.1) is a
probability measure u on C¢. such that for any f € @§(¢'). the real-valued

f t . .
process M = f(xt) - f(xo) - IO Lsf(xs)ds is a (0.3.(9t).u) martingale with

The following conditions are imposed on the space ¢, measure Ho and the

coefficients A and B.
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Let {h?} be a CONS in ¢m obtained by the Gram-Schmidt process applied to a

. countable dense set {§j) in . For every j, we then have
n,
E. = 3a h: +7. (2.4.2)
J o ™k J

where nJ (depending on m and j) < j and Hnjﬂm = 0. Our assumption is the
following:
(A) For each m and p, (p2m), in (2.4.2) Hnij = 0.

Let TDO be fixed. Then, for each sufficiently large m>r where r is

introduced in (2.2.1), there exists a number 6>0 and an index p>m such that for

all s,t { T,

(IC) Initial Condition: e : = J (1+Mu )[en(3+Iul® )TPu (du)<w
o] ¢ -m -m (o]

(CC) Coercivity Condition: For each u € jm¢.

2A(e.w)03_yud + 1950¢ yylom,om € o(1+ui )

where jm denotes the canonical map from ¢m to ¢_m. with j_m as its
inverse.
(LG) Linear Growth Condition: If u € ¢-m' then A(t,u) € ¢_p and

uA(t.u)ufp < 9(1+"uH%m)

2
lQB(t.u)‘—m,—m < O(1+ManZ )
(JC) Joint Continuity Condition: A and B are each jointly continuous.
Further,

(i) B(s.u)(v) € ¢—m if u,v € ¢—m and

(i1) QB(s.u)(¢'¢) is continuous in u on ¢' for each ¢ € ¢.

The following condition will be needed in the proof of uniqueness.

(MC) Monotonicity Condition: For all u,v € ¢_m (C ¢_p)

(A(t,u) - A(t.v), u—v)__p + lQB(t.u)—B(t.v)l-p.—p < eﬂu—vﬂ?p
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We give below the main result of Kallianpur et al. [8].

Theorem 2.4.1. Assuming conditions (A), (IC), (CC), (LG) and {JC), there exists

a weak solution to the stochastic differential (2.4.1). Besides, it has the
pathwise uniqueness property if ((MC) is satisfied.
Next, we give a moment bound, followed by a tightness result both of which

are due to Baldwin et al [1].

Theorem 2.4.2. Let k21 and ENXyI°S ¢ ¢ < ®. Then, under all the conditions

of Theorem 2.4.1,
2k 2
E sup "Xs"—m < (2Ck + 1)exp((136k™ - 4k)6T)-1
0<t<T

4k(k-1)6t

Remark 2.4.1: ENX 125 ¢ (2, +1)e -1 for each 0St<T.

Theorem 2.4.3: Assume that the coefficients associated with the equations

xl'l

n t.,n n tLn n n
¢ = X * JoA (s.X0)ds + S B"(s.X)dW,

and

t t
X, = Xo + JoA(s.X )ds + [ B(s.X_)dW_

satisfy the conditions:
1) Conditions (IC), (CC), (LG). (JC) and (MC) hold as stated where the

constants and indices are independent of n.

nD
2) Xo —»XO

3) If Qn and Q denote the covariance forms of {Wz} and {Ws} respectively, then
Qn converges to Q.
4) For each s€[0,T] and ¢ € &, An(s.-)[¢] converges continuously to A(s.°*){¢].

5) For each s€[0,T] and ¢ € ¢, (Bn(s.-))*¢ converges continuously to B*(s.°)¢.

Then P+(x™) ™! => P-Xx"! 1n ¢
-p
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Remark 2.4.2: If T>O is fixed, the solution of SDE (2.4.1) namely X will have

paths in Cg a.s. where p is the index that appears in the conditions.
~p

Remark 2.4.3. Throughout the paper, the notation 2% is used to denote

convergence in distribution of random variables whereas the notation => is used
to denote weak convergence of measures. Thus, Xn Qa»X is equivalent to
P°(Xn)—1 => P'X_l. where PX;1 and PX_l denote the law of Xn and X respectively.

We adhere to this notation even when the random variables are measure-valued.

3. SYSTEMS OF ¢'-VALUED SDE's

The aim of this section is to extend the results of the previous section
to a system of stochastic differential equations which is done by first

introducing the Cartesian product of nuclear spaces.

3.1 Cartesian product of nuclear spaces.

Let ¢ denote the nuclear space introduced in Section 2. Consider the

linear space ¢x¢ with coordinatewise linear operations. Let
2 2 2
II(¢1><¢2)IIr = ll¢lllr + II¢2IIr for rl. (3.1.1)

An increasing sequence of Hilbertian norms is thus defined on $x¢ which
preserves nuclearity of #x$#. To see this, let ¢rxr be the completion of ¥xd in
the product r-norm given by (3.1.1) for all r21. Clearly, ¢rxr= ¢rx¢r and

xd = N (¢rx¢r). Given n>0, if mdn such that the canonical injection
r2l

i: ¢m Cc ¢n is Hilbert-Schmidt, then the injection (¢x¢)m C (¢x¢)n is also
Hilbert-Schmidt.

Let (¢xP)' denote the strong dual of ¢xP so that ($x¢)’' = U (¢rx¢r)'. If
r2l1

S (¢rx¢r)'. we can uniquely determine two linear functionals 81 and 82 in ¢_r

such that
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8(9,.95) = €,(9,) + &5(9;) for all ¢,.9,€ & (3.1.2)

Likewise, given 81 and 82 in ¢-r' there exists a unique ¢ in (¢rx¢r)' such that
(3.1.2) is satisfied. In short, there exists an isomorphism between (¢rx¢r)'
and ® x® which is writtenas (¢ xp )' ¢ x ¢ .

-r -r rr -r -r

The above isomorphism is not just algebraic but topological as well, if

¢_rx ¢_r is equipped with the product -r norm. i.e.

2 2

2
(uyxu )7 =l 07+ Hu i . We thus get

1

(9xP)' = U (¢ xd )" = U (¢_x9¢_) (3.1.3)
1 T 1 T r

Besides, U (¢_ x ¢_r)
ry1 T

equivalence, consider a neighbourhood of zero in ¢'xd’' i.e. Let Al and A2 be

¢'x ¢' set-theoretically. To see the topological

two bounded sets in ¢, and >0 be given. Consider the set

A = ((81,82): sup le1(¢)| (e, sup !ez(w) Ce)Co'xd.
$ €A V€A,

For any fixed r2l, 3 a_ e»Ai C {¢: H¢Hr < ar) i=1,2 so that

: e e
Ad ((81.82)- nelu_r < a] . ue2n_r < a1)
Thus
. 2 2 2,2
Q Q((81.82)- Ilelll__r + nezu_r < e /al) (3.1.4)
On the other hand,
AC{(e.8): sup |e1(¢1)+e2(¢2)| < 2} (3.1.5)

(6-95) € Apeh,

and Alx A2 is a bounded set in ¢ x ¢. (3.1.4) and (3.1.5) give us the

topological equivalence of U (¢_rx¢_r) and ¢'x¢’'. Therefore (3.1.3) implies
r2l

that
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(Pxd)' = U(Pxd) = U(® xo_)=0x9o". (3.1.6)
r>1 r r r>1 r r

Equation (3.1.6) carries over for any finite number of Cartesian products.

3.2 System of SDE’s

Let Xg be ¢'-valued processes, 1{j<n governed by the SDE

n
&Xj(t) = (a(e.X](t)) + % iilb(t,X?(t),X?(t)))dt

+ (o(6.X}(e)) + z gc(c.x’j’(c).x‘i‘(c)))dw{ (3.2.1)

i=1

and X?(O) 1{j<n being iid ¢'-valued r.v.’s with law of X?(O) given by the
probability measure Ko {Wj}. 1{j¢n., are independent copies of a Brownian

motion with Q as the covariance form. Besides,

a: RN x ¢' — ¢
b: R x &' x ¢ — @
o: RW x ¢ — L(d': ¢')

c: RW x &' x & — L(d': ¢')

Let (X?(t).....xg(t)) € ¢'x...x ' be a solution of (3.2.1). Then the
isomorphism given by (3.1.6) between ¢'x...x ¢' and (¥ x...x $)' we can write

the system of SDE's (3.2.1) as follows:
dx’: = (Z(t.x’t‘) + E(c.x‘t‘))dc + (E(c.x't‘) + E(';.x’t‘))dwt (3.2.2)

where initial value Xg is a (¢x...x ¢)'-valued r.v. such that Xg is isomorphic
to (X?(O).....XQ(O)) € (¢'x...x9"'), and Wt is the (¢ x...x ¢)'-valued Wiener

process described below.




By the independence of {WJ}lsjsn

n
2 Q(wj.‘l/j)-

W[e.¥] = t
gy =1

Besides, {X"} is a (& x...x ¢) '-valued process. The coefficients appearing in
t

(3.2.2) are given as follows:

a: R x (P x...x ¢') — (& x...x §)°
B: R x (¢ x...x ¢)' — (& x...x ¢)°
o: R x (& x...x )" — L{(® x...x $)': (& x...x $)')
SR x (& x...x ) —L((& x...x 8)": (& x...x $)")
For z = (¢1,...,¢n) and 2=(¢1""'¢n) € ¢ x...x $ and u = (ul....,un) and
v = (vl.....vn) € (¢ x...x 9)', we have
n
;(t'u)[:'p] = 2 a(t,uj)['pj]
~ j=1
_ n , n
n
QW) = 2 oleu)(vle)]
_ , » n
C(t.g)(z)[:f] = 5’ le iilc(t'uj'ui)(vj)[‘pj]
so that

— n
Iba(s,g)dws[fj = 3

t J
j~1f0 a(s.uj)dws[¢j]

oot
2 Js c(s,u
=] i=1 0 J

I M3

[§ S(sw)dW [o] = 2 SRECICN

3.3 Existence and uniqueness of solutions.
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Under the conditions given below, there exists a weak solution X? of
(3.2.2). Such a solution will also be shown to be pathwise unique and thus
ensures a unique strong solution (X?} € (¢ x...x 9)' to the equation (3.2.2)
(see [5]).
Analogous to (3.1.6), the isomorphism C(¢x...x¢)' = C¢.x...xC¢. is easily
established. Towards this, fix T>O and consider y€d{¢ X...x ®)" so that for

each O<t{T, y(t) € (¢ x...x #)'. By using (3.1.6), y(t) is isomorphic to, say,

(yl(t),....yn(t)) €EP'x...x ' for 0 { t T and so, lim y(t) = y(to) is
tot
0
equivalent to lim yk(t)=yk(to) for each 1<¢k¢n. Let {]|+]| : a€A} be the set of
tot, @«
semi-norms defining the strong topology of ¢'. Set ny My = SUP |y, (t)] for
a k a
04T
T 2 7 2
yk€ C,.. 1 {k{nand a € A. Define lyﬂa = 3 mykma for each ¢ € A. By
k=1
replacingll°|lr by wew in (3.1.4), the arguments used in deriving (3.1.6) hold
. T A .
in the present context as well and thus C(¢x...x¢)' is isomorphic to
T T . . -
C¢.x...x C¢.. Q¢.x...xC¢. and C(¢ x...x )" equipped with the projective limit

topologies of {Cz.x...x Cg.I TeN} and {C;.x...x CI: T € N} respectively, are

therefore isomorphic.

Let x?(c). 1<j¢n and >0, be such that for each ¢ = (p;.....¢ ) €
$ x...x b, x2(¢) x zx? [¢;]. Then x?(-) €C,, for 1 < j < n and solve (3.2.1).

The conditions for the existence and uniqueness of solutions of SDE (3.2.2) are
as follows: Conditions (A) and (IC) of Section 2 are assumed to hold. It is
easy to note that condition (A) on ¢ implies that on ¢ x...x &. Likewise

condition (IC) of Section 2 implies

) (1+HuH?m)[en(3+HuH%m)]2 ﬁ;(du) &
(¢ x...x ¢)' ~
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where u€(dx...xP)' and Eb = Q(Xg). We will call (A) and (IC) as (SA) and (SIC)

where S stands for system of stochastic differential equations. The
coefficients a,b,c and o are assumed to satisfy the following conditions:
For any T>0, 3 LT 2 r such that for each m 2 LT' 3 a number 6 and an index p
(note that 6 and p depend on m)} such that:
(SCC) For u,v € jm¢. and 0 { t { T,

2a(t.u)[j_mu] + 2b(t.u,v)[j_mu]+

lQa _m§9(1+HuH?m+ﬁ(t,u,v)"v"?m)

(t.u)+c(t.u.v)l-m.

where

0 if b(t.u,v) = c(t,u,v) =0
B(t.u,v) =

1 otherwise
(SLG) Let u,v € ¢~m' and 0 { t < T. Then a(t,u) € ¢—p and b(t,u,v) € ¢_p.

Besides,

ua(t,u)ufp < 9(1+HU"?M)

2 2 2
Ib(t.u,v)IZ) < O(1+iulZ + IviiZ )

2

o, _p S 0(1+IuliZ )

(t.u)l—m.

2 2

lo, _p $ 01+l +iviiZ )

(t.u.v)l-m.

(SJC) a,b.c and o are jointly continuous functions. Further,
(i) For u,v,w € ¢_m ,
o(t,u)(w) € o
c(t,u,v)(w) € ¢_m
(ii) Qa(t.u)(¢'¢) is continuous in u on ¢’ and Qc(t.u.v)(¢'¢) is
continuous in u on ¢' for each ¢ € ¢.
The following condition is needed to prove the uniqueness of solutions.

(SMC) For Up.vyU,.Vy € ¢—m (C ¢_p)
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2
(a(t.ul)-a(t.vl),ul--vl)__p + IQa(t.ul)—a(t,vl)’-p,-p <6 Hul—vlu_p

and

(b(t.uy.ug)-b(t, v . vp)up=v )+ ch(t‘ul.u2)_c(t'vl'v2)l_p__p

2

2
<6 {Ilul—vlll_p + "uz—vzﬂ_p}

It is easily verified that the above conditions will imply (CC}), (LG),
(JC) and (MC) for the coefficients a,b,c and o for equations (3.2.2), so that
by Theorem 2.4.1 we get existence and uniqueness of solutions for the SDE
(3.2.2). The moment bound given in Theorem 2.4.2 becomes

E KRy nX ¢ +1 136k2-4k)6T)~1 3.3.1
2B M) € (G ( )6T) (3.3.1)

where Ck = E"X?(O)"%ﬁ < @ and is independent of n. In fact, the following
bound can also be derived by an obvious modification of the proof of (3.3.1):

Under the Condition (IC)

%

E sup uxg(s)-xﬁ(c)u%p < ¢ (3.3.2)

|t-s|<5
0<t,s<T

where ¢ is a constant independent of n. Tu see this, note that if T 2 t > s

O with t-s ¢ 6, then

n
XJ(e) = Xls) + SL{(als) Xj(=)) + & 2 b(s.X](s).X]()))ds

ft xR 1 ? n n d J
+ < {o(s. j(s)) + a-iilc(s.xj(s).xi(s))} Ws.

We get (3.3.2) by the familiar route namely, via. Doob’s inequality, Jensen's

inequality wherein the condition (SLG) is used crucially.

Note: O<T<® will be kept fixed till the last paragraph in Section 6. Thus X?
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1<{j<n, the solution of 3.2.1 will each have paths in Cl a.s. where p is the
~P
index that appears in the conditions.

§4. WEAK COMPACTNESS OF EMPIRICAL MFEASURES.

Let X" denote the solution of the SDE (3.2.2) so that

g x...xCk  where X3(+). 1<J¢n solve the SDE's

n o, o 0, n.,
X2 (XT()....X2() € A
-p -P
(3.2.1).
T T T .
Let Q(ch ) be the Borel o-algebra of Cp - Forwenq, B€?B(C¢ ). define
P P P

the empirical measure
1 b

B)== 35 B). (4.1)
p (w.B) = = & X?(°,w)( )

For any k 2 1, let w(Cg ) be the space of all probability measures on
-k
CT

® equipped with the topology of weak convergence of measures. Likewise
-k

w(Cg.) will be the space of all probability measures equipped with the topology
of weak convergence of measures. Note that the canonical injection

i:1r(CT ) C 1r(C’r ) is continuous if k { 8. To see this, let A € 1r(CT ) such
¢—k d>_e n ¢—k

that A_ => A in w(CT ). Therefore, for all f € Cb(CT ). § f(y)A_ (dy) —
n ¢_k ®_\ T n
C¢
-k
J f(y)A\(dy) as n— o, If g € Cb(CI ), let §: ¢ kC ¢ 2 be the continuous
T -8 B -
C¢

-k
canonical injection of ¢ ;. into & , so that the composition g+j € Cb(CT ).
-k -8 d’—k

Besides, { (&) (¥ (dy) = { g(y)A (dy) and { (2°3)(y)N\(dy) =
o) C C
*x .’ *x

J g(y)A\(dy). so that }\n => A in Tr(Cz } as n — ®,

cg -¢

-8
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B, is a random measure with un(w.') € w(Cl ) for each w € 2 and n 2 1.
-p
T ;
Let vn(B) = Eun(B) for all B € Q(C¢-p). Let n_ = Q(un). the law of p . i.e.,
the probability measure on W(Cg ) induced by the random measure K- Thus,
P

nen(n(Cy )
n ¢_p

Theorem 4.1: Under the conditions (SIC), (SA). (SCC). (SLG), (SJC) and (SMC).
we have

(a) the sequence {vn) is tight in W(Cg ) for some q 2 p.
-q
(b) the sequence {nn) is weakly compact in w(w(Cg )).
-q

Proof: (a) For any set B € ﬁ(dg.).

=N ]

n
v (B°) = Eu (B°) = = 3 P(x‘j1 € B®) = P(x'l’eB") since x?, 1<j¢n, are identically

i=1
distributed random variables. Therefore, the tightness of {vn} in v(Ci.) is

equivalent to the tightness of {X?} i.e., of the probability measures {Pn}

n2l’
on w(Cg.) where P = law of X?.

By a result of Mitoma [14], the tightness of {Pn) is equivalent to the

tightness of {in;l} on W(Cg) for each ¢ € &, where 7, : Cg. -—)Cg with

¢
w¢(u) = u[¢]. The tightness of (in;l} follows by verifying the following two
conditions:

(i) Given e > 0, 3 a > O such that

sup Pn(y € Cl.: sup Iyt[¢]| >a) < e
n 0<t<T

(ii) Given e > Oand p > 0, 3 6 > O such that

sup P(y € Cp.i sup |y [#1] -y [41] 2 €) < p.
n |t-s|<6
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Condition (i) is verified by noting that E sup HXT(t)H% is finite and
0St<T P

independent of n. To verify (ii), note that

P'(y: sup |y [¢]-y,[#]] 2 €) < P'(y: sup
|t-s|<5 t-s|<6

"yt_ys"-p"¢"p 2 €)
2
hgll
2
< T E sup IXT(t) - X(s)I“ < p
62 [t-s|<5 1 1 P

2
if 6 is such that E sup ux?(c) - x?(s)uf < fLi%z.
|t-s|<5 P lgns

By the moment bound given in (3.3.2) we have that

E sup  IX](t) - x?(s)u?p { cb*

|t-s|<6

so that a 6 as desired does indeed exist once we are given e,p and ¢.
The tightness of {vn} is thus established on the space w(CI.). For any

¢ € &, and any given e > O,

P( sup |XT(t)[#]] > €) < P( sup UXS(t)I_ Nell_ > €)
ogt<T I 0StsT 3 mTm
2
Nl 9
¢ —= E sup IXT(t)0°
2 ogeeT 4™
2
eyl
¢ 2m (2c1+1)e1329Tg o
€
2 ggz
if H¢Hm < T356T" Thus by Mitoma ([14]; Remark (R.1)), {vn} are
(2C1+1)e

uniformly m-continuous and hence, are uniformly p-continuous as well.

Therefore, there exists an index q 2> p such that {un} is tight in W(Cl ).
-q

(b) For the second part of the theorem, let us look upon un(w.‘) as
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T T T
w(C¢ )-valued random variables. Then v € w(C¢ ) and n, € W(W(C¢ )) for all
-q -q -q
n2l.
Note that v (B) = [ A(B)n (d\) VB € % w(Ch ). (4.2)
T -
v(C¢ )
-q

Using part (a) of the theorem, for each j > 1, there exists a compact set Kj in

T
Co
-q
K={\: A(Kj) 21 - %-V j} where Kj’s can, WLOG, be taken to be increasing sets.

KC w(Cg ) is compact since closed tight subsets of probability measures on a
-q
complete separable metric space (in our case, on Cl ) are compact (see Chapter
-q

such that vn(Kj) =J A(K;)dnn(A) < e/j3 where € > O is given. Let

II, Theorem 6.7 in [15]).

n,(K) = P(u_€K°) ¢ jzl

- .
2 (MK 2 )

(VMK < 1= D)

J

o [ ANKS) dn
2 n
PN ¢VE)))

[ ZaN

1

5 < 2e.

N
m
i M 8

1

Cse

J
Thus tightness of {nn} in w(v(Cg )) ensues.
-q
Note that W(CI ) equipped with the topology of weak convergence is a
-q
complete separable metric space (see Ch. II, Theorems 6.2 and 6.5 in [15]).

Tight subsets of probability measures on a complete separable metric space are

relatively compact. The proof is thus complete.
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Remark 4.1. Let {nnk} be the subsequence given by the above theorem so that

n_ => n (say). Let p denote the w(Cg )-valued random variable whose law is
-q
given by n. Thus nnk=> 11 is equivalent to saying that pnkga»p.

Remark 4.2. By a well-known theorem of Skorohod, there exists a probability

space on which are defined w(Cg )-valued random variables, say {Z_ } and Z
-q
with law of Z = 7n_ and law of Z = n such that an — Z a.s.. Using this

T

representation and applying Fatou's lemma, we get

E sup [ y " Z(dy) J { sup [ "ys"%q A(dy)}n(dN)
0¢s<T T T 0<s<T T
Cy w(Cy ) Cy
-q -q -q

¢ lim E sup [ Ny H Z (dy)
k® O¢s<T T 4y
®

-q

=1lm [ 5oy P (dy)In_ (d
m { sup Vg y ﬂnk( )

0¢s<T T
Co

-p ~p
ko

1
{ lim E sup — 2 iX (s)"
k= 0¢s<T Pk j=1 9

< (2C,+1)exp(1326T) (4.3)

by using (3.3.1). The inequality (4.3) holds with C1 and 0 remaining the same

if T is replaced by any t on both sides of the inequality (4.3), 0<t<T.

Remark 4.3: In case p is a degenerate random variable, and Y is a CI -valued
-q
random variable with ¥(Y) = u, then Remark (4.2) implies that for each 0<t(T,

E sup Y12 ¢ (2C,+1)exp(1326¢). (4.4)
o¢s¢t ° 9
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§5. THE McKEAN-VLASOV EQUATION

Let {Yt: 0<t<{T} be a ¢'-valued stochastic process that solves the

following SDE known as the Global McKean-Vlasov equation: For 0 < t { T,

Y, =Y, + f(t) A(s.Y_.2(Y))ds + f(t) B(s.Y_.2(Y))d¥_ (5.1)
where
A(s.u.A): [0.T] x @' x m(Cy.) — ¢

B(s.u.A): [0.T] x &' x w(Cg.) — L(®': ¢°)

and W is a ¢'-valued Wiener process. ¥(Y) denotes the law of Y, and YO is a

¢'-valued random variable.

The local McKean-Vlasov equation is of the form:

t t
Yt = Yo + IO A(s.Ys.Q(YS))ds + fo B(s.Ys,Q(YS))dWs (5.2)
for O<t<T.
By uniqueness of solutions of the SDE (5.1}, we mean the following:

For each A € w(Cg.). let, for O<t(T,

t A t A
YS = Y, + 5 A(s. YA N)ds + S§ B(s.YhA)dW_. (5.3)

A A
Suppose there are Al and Az € w(Cg.) such that Al = LY 1) and Az = $(Y 2).

Then A 1 =)\2 .

Existence and uniqueness of solutions of equation (5.1) in full generality

will appear in Baldwin et al. [1]. Here, we content ourselves with the

following choice of A and B: For each A € W(C:.). let
A(s,u,N) = a(s,u) + b(s,u,A)

where g(s.u.k) = b(s.u.ys)k(dy) and
T
C¢.
B(s,u,A) = g(s,u) + c(s.u,]A) (5.5)

-_—
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where c(s,u,2) = [ c(s.u.ys)k(dy). Besides, we assume that there exists a
T
C¢.

sufficiently large number M(m), possibly depending on m, where m is as in

subsection 3.3, such that for each u,v € ¢_ , and O<s<T,

bs(u.v) if Hu—v"_m < M(m)

b(s,u.v) = (5.6)

bs(u.v) otherwise

vwhere bs(u.v) and bs(u.v) are functions of u,v with Hbs(u.v)ll_m { C(m) for each

s € [0,T]. Likewise

cs(u.v) if dhu-vil_ < M(m)
c(s,u,v) = ¢ . (5.7)
cs(u,v) otherwise.
with cs(u.v) and cs(u.v) are functions of u,v with |Q. I—m -m ¢ C(m) for

cs(u.v)
each s € [0,T].
With b and ¢ as above we first note that b and ¢ exist and are finite. To

see this, consider

B(s.u.A) = S b(s.u.v )AA(v) = § bis.u.v)dnr (v).
CT -3
¢l
Since u € ', there exists an index k such that u € ¢_k. and such a k can be
chosen to be sufficiently large.

Using such an index k in the place of m in our conditions given in

subsection (3.3) as well as (5.6) and (5.7), we get for each ¢ € ¢ that

15(s.u.A)[e]] ¢ (fp. Ib(s.u.v)[ellrr " (v)

= flb(s.u.v)[w]ldkvgl(v)
A
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+ £ [b(s.uv)lellarr, ' (v)
A('3

where A = {v: Ilu—vll_k <{ M(k)}. Continuing,

< { u¢upk(1+nuu_k+uvu_k)dxw;1(v) + C(K)

by using (SLG) with Py > k as the index that corresponds to k. Continuing,

guwupk(n(k) + 1+ 2lull, + C(k) < .

Likewise one can establish the finiteness of g(s.u.k) by showing that

lQ, I—k,-k < © whenever u € ¢_, .
c(s,u,)

Such a choice of b and ¢ makes physical sense in it that a pair of
particles far apart interact boundedly. This choice includes in particular the

case where b(s,u,v) and c(s,u,v) are both bounded in the sense that
Hb(s.u.v)"_m {C

o (u v)l‘“"“m ¢ 6
sl
for all 0<{s<T, u € ¢' and v € $'. We assume that the functions a,b,c and o
satisfy the conditions (SCC), (SLG). (SJC) and (SMC). It is then a routine
matter to check that A and B, as defined above, satisfy {(CC), (LG), (JC) and
(MC) as listed in Section 2 with the same indices and with constants
independent of the measures A € w(CI.). We need and hence introduce the

following additional condition:

(SJC)* (i) For each A € W(Cg.). g(s.u.k) and c(s,u,A) are jointly continuous

in s and u. Q_ (¢.¢) is continuous in u on ¢' for each ¢ € ¢ and
c(s.u,}A)

s € [0,T].
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(ii) For each ¢ € ¢, u € ¢_m and s € [0,T]. g(s.u.kn)[¢] converges
continuously to b(s.u,A)[¢] and Z*(s.u.kn)¢ converges continuously to

E*(s.u.k)¢ as An => A in w(Cl.).

Theorem 5.1: Consider the SDE (5.3) with A and B specified by equations (5.4)

to (5.7). Assume conditions (SA), (SIC), (SCC), (SLG). (SJC). (SMC) and (SJC)’
and that EHYOHfm where C is a positive constant. Then,

(i) the McKean-Vlasov equation defined by the equation (5.3) admits a solution.

The solution YA lies in Cg a.s.
-p

(ii) The solution is unique if the following additional condition holds

(MCr): For all u,v € ¢-m' and (1.§2 € w(Ci.), and 0¢s<T,

<g(s.u.§ ) - g(s.v.( ).u-v>_ + 1IQ - n__
' SO - ERH O B ERN ) B

< CpK(F].Cy)hu-vil__ + Ilu-vllgp} (5.8)

where C% is a constant and

inf J J lu-u ll__ A_(du,du,) if ¢, #¢C
Ks((l'c2) = 1’2 . .
0 if fl = gz
Here, d((l.fz) = the set of all probability measures A on dT' x Cg. with the

prescribed marginals (1 and (2. Besides, At = szl .

Proof: A complete and detailed proof of this result will appear in Baldwin, et
al. [1]. Here we will briefly outline the basic ideas of their proof with
modifications to suit our needs.

Let A

It

{Q(Yx): A€ w(Cg.)}. Then A is a tight subset of w(Cg.) by
Theorem (2.4.3). Define the map w-w(CI,) — A by ¢(u) = Q(Yu). Again by

theorem (2.4.3), ¥ is sequentially continuous.
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Note that A is a subset of w(Cg ). By using Theorem (2.4.2) for k=1 and
“P

a result of Mitoma [14], we know that there exists an index P 2 p such that A

is tight as a subset of 1(01 ). Let ce(coA) denote the closure of the convex

P
hull of A in w(Cg _ ). Then cé(coA) is tight in w(Cg _ ) and is therefore
-P -P
compact in w(di _ ). The canonical inclusion j:w(Cg _)¢c W(Ci.) is
-p -P

continuous as can be seen from the proof of part (c) of Theorem 6.3.
Therefore, c2(coA) can be viewed as a subset of w(CI.) and is a compact and
tight subset of w(Cg.).

It can be shown that the topology of weak convergence in v(Cg.) when
relativized to a compact tight subset of W(Cg.) is metrizable so that c&(coA)
is a Polish space under this topology.

Let y: c&(coA) — c&(coA) be the restriction of ¥ to c8(coA).

c2(coA) is metrizable and so sequential continuity of ¥ is equivalent to
continuity of Y. An application of the Schauder-Tychonoff fixed point theorem

(see [3]) gives us the existence of the McKean-Vlasov equation. If Ao € N(Cg.)

A
such that AO=Q(Y o), then, for this choice of measure Ao. the coefficients A

and B satisfy the conditions of existence and uniqueness of solutions as listed

in Section 2. Therefore YA € d; , since A C w(Cg ).
P -p
For part (ii) of the theorem, let kl and Az be two measures in w(Cl.) such

1 2
that Al=¢(Y" ) and A2 = ¢(Y) ). Then Theorem 2.4.2 implies that

1 2 2
E sup HY: H% { © since E sup HYﬁ Hg ¢ o, Likewise, E sup HYt Hg < o,
0<t<T P 0<s<T P 0<t<T P
1 .2
Therefore if Y, = Y Y\ , E sup Y 12
0¢s<T

HYtng°exp(-2CTt) vwhere CT = C*(AI,A2) is the constant that appears in (5.8),

¢ (o, Applying the Itd lemma to

and then using the condition in part (ii) of this theorem, we get that
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2 t 1.2 ~Crs
ENYGH_exp(-2Cpt) < Efg K (A ATV _Cre — ds.

Since Ks(xl.x2) < EHYSH_p. the above inequality yields

~Crs 2

2 t
EHYtH_pexp(-2CT) < Cﬁjb e EHYs"_pds.

Gronwall’'s lemma now yields EIIY%II_p = 0 for all t € [0,T]. Since Yt is sample
1,2
continuous, sup HYA -YA Hg =0 a.s.

0<t<T °©

Remark 5.1: Since the conditions of Theorem 5.1 hold for all sufficiently
large m with p being the index determined by each such m, the conclusion of the
theorem holds in particular when m is replaced by a larger index. Therefore,
the measure ko obtained in Theorem 5.1 is the unique solution of the
McKean-Vlasov equation defined by equation (5.3) even among the measures in the

larger space viz. w(Cg ) for any k > p. This fact will be used in Section 6
-k

for the particular choice of k=q where q is the index that appears in Theorem

4.1.

§6. PROPAGATION OF CHAOS

Let Pn denote the unique probability measure on (Cg )Qn that solves the
-q

martingale problem posed by the system of equations (3.2.1) subject to the
conditions listed in subsection 3.3, and conditions (SJC)' and (MCr). Besides,

we assume that b and ¢ satisfy conditions (5.6) and (5.7). n € w(w(Cl )) is
-q
given by

n, 1
n,(B) = P .(y" :

M3

L's 1_eB) vBesn(c, )

i=1 yi -q

where yn denotes a generic point in (d; )@n so that yn = (y?.yg....,y:) where

-q




-

27

each component belongs to Cg . The method employed by Sznitman [12] is used
-q
in proving the following theorem.

Theorem 6.1: Under the conditions specified in Theorem 5.1, let ko € w(Cg } be
-q
the unique probability measure that solves the McKean-Vlasov equation (5.3).

Then, the subsequence (nnk} obtained by Theorem 4.1 is such that n_ => 5A
o

where & refers to the Dirac 5 measure provided that there exists a > O such

that EHX?(O)Hf;a <{ C, where C is independent of n.

Proof: Let f € E§(¢') (see subsection 2.4) so that f(u) = ?(u[w]) for some
«pedband?e(%(lk).
Ly j(f.¥"8) = F' ()6 (a(s.¥5(s))[0] + b(s.¥(s).](s))[e])

+ 5] ()[e])

n
- ot 2 (005,55 () + e(s.¥5().¥7()) To).

1
n

H Mo

(o(s.¥5(s)) + e(s.¥] (s).¥} (s)))7Te])
k=1

where yn = (y?.....yﬁ) € d'x...xp'. Let

L(f.y(s).s.0) = f [?'(y(s)t«pl)
CT

(-]
—-q
{als.y(s))[#] + b(s.¥(s).2(s))[e]} + 5" (¥(s)[])

A (ols.(s)) + c(s.¥(s).2,(5))dz(2))) " [#1).

Co

-q
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(I (ols.y(s)) + o(5.¥().2(3))dN(2)) To]) |aA(2)
C
4

-q
By the conditions listed in subsection 3.3, the existence of a unique solution

to the martingale problem posed by (3.2.1) is guaranteed. We have called such

a solution as Pn. Therefore

T ’ t,l 3
E(y3(0)le]) - £G(I0eD) - S5 2Ly 0y s

is a Pn—martingale with O{r<{t<{T. By the conditions listed in the statement of
Theorem 5.1, a unique solution of the McKean-Vlasov equation posed by (5.3)

exists and is denoted by Ro. Therefore the following is a ko-martingalet

£(y(0)e1) - F((r)Le]) - SEL(E.y(s) 5.0 )ds
where 0{r{t<{T. Consider the function F: w(dg ) — R defined by
-q
FOA) =5 (F(0)09]) - F(y(r)[e]) - SL(E.y(s).5.)ds)  (6.1)
%
-q

g, (y(ry))...g,(y(r,))dA(y)

where osrlgrz...grpgth and gl.....gp are bounded functions from ¢—q — R.
Hence F(Ao)=0. Now we will show that [ F2(A)n(dk) = 0 by direct

w(Cy )

-q

evaluation. From this, it follows that the support of 1 is contained in the
set of solutions to the L-martingale problem. Corresponding to each solution
of the L-martingale problem, we can construct a weak solution of the
McKean-Vlasov equation, by the method employed by Kallianpur et al. [8]. From

the previous section we know that the McKean-Vlasov equation has a unique
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A
strong solution namely Y O. Therefore the set of solutions to the L-martingale

problem is the singleton set {Ao}. From the fact that Ao is the unique

solution to the martingale problem it will then follow that n=5k .
(¢]

Claim: 1im Fz(x)nnk(dx) = FPOn@)

k-»o T T
w(C¢ ) w(C¢
-q -q

Proof of Claim. Let As denote AW;I. If A is in the support of nnk recall that

As has support in ¢—m for each 0¢{s<{T. For each u,v € &', ¢€b, A\ € N(Cg ) and

0¢{s<T, let for R > O,

aR(s.u)[¢] = (-RVa(s.u)[¢])AR

bR(s.u)[e]

(-RVb(s.u.v))[¢])AR

R
Qh(s.u.Rs)(¢'¢) = RAQh(s.u.As)(¢‘¢)
~ R.R R
where h(s.u.As) = o(s,u) + c(s.u.As). Replace a,b and Q by a ,b and Q

respectively in the definition of F, and call the resulting function as FR.

lin o Fn, (@) = S ROn(@)

ko T T
(Cy ) m(Cy
-q -q

since FR € Cb(v(Cz )}). The claim will be proved if we show that
—-q

I (P - Fﬁ(x))nnk(dx)) and §  (FP(A) - F2(A))n(d\) can both be made

"(Cy ) "(Cy )
-q -q

arbitrarily small when R is sufficiently large.

Using Fubini's theorem and Jensen's inequality,

§ o (FPOY-FE()n, (d)$3(t-r) ( max g 12)P
Tk 1<i<p

n(cl )
-q
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X ItE

L ! (FIela(s. NP A(dy)  (6.2)
oy, (32 [a(s.y)[#1 >R}

(F' (Le1)b(s.y.A ) [91) 2 (dy)

+ ~ 5
{y: [o(s.y.2)[#] >R}

~ 2
+ J (4" (y[#]) (#.9)) N (dy)]ds
i (s,y.a ) (#:#PR) sy A) °
S

It remains to show that each of the three terms on the right side of (6.2) can
be made arbitrarily small, uniformly in k, when R is large. Since the method

for each term is essentially the same, we shall consider only the third term.

Qh(S.y,RS)(¢'¢) < H¢Hi IQh(S,y.RS)l—m.-m < "¢“i[39(1+4"y"%m+ﬂ2(m))+302(m)]

by using (SLG) and equation (5.7). Thus

{y: Qh(s.y.)\s)(“’"’) >R} € {y: “Y"?m > Rk}

where k is a suitable positive constant and R is sufficiently large.
Therefore, the third term on the right side of (6.2) is
t 4
< K1 Ir Eﬂ J 2 (1+HyH_m)As(dy)ds
0y {y:"y"_m>R/k)
by using (SLG) again with K1 as a suitable constant independent of ™, -
Continuing:

<k St L S B[ (14 nk(s)n‘_*m)x Jds

X
J
" Tk 3=l (ux;k(s)ufm > R/K)

44a .t 1 P, ndta, 4/ (4+ Pk, 2 a/(4+
¢ k2% gt o J%‘l‘ (E(1+ix S (5)11%)) ( a){P(lej ()12 > R/K)) %) 4s

by Holder's inequality.

——
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o/ (4+a) _ | 0

S ky/R

vherein the last inequality uses Chebyshev'’'s inequality and the moment bound

as R —» o,

given by (3.3.1). Besides, k3 is a constant independent of n . The fact that

J (F2(A) - Fﬁ(k))n(dk) can be made small for large R, follows along the
T
w(C¢ )
-q
same lines as above and its proof is hence omitted.

Continuation of the proof of the theorem: Using the above claim,

Ir F(?\)zn(d?\) = lim ®nk [( rzh‘(f(.vj (t)[eD)
1r(C¢ ) k- W(
-q

g“Li _ j(f.gn“. )ds)s, (v,5(r ). .gp(y;“hp)nzdrnk(zn“)

- f(y?k(r))[vl - I q

1
i By=p (&L 35 ep that
since n y 2 ) so

Yy

£ (o oD - T ke - 5L ;“L“’ [ty Ee)ds)

(C; ) n, r nk i=
"k "
G RIEACR GRS NCoE) * 5 n)
y

i

) L (G KD - Ty Koo - I 3“ L? (F.y K.s)ds)
w(Cy )”“k“k
-q

- 8,y (). .gp(yj“(rp)))zdpnk(gn“) (6.2)

Then, the right side of (6.2) is equal to

LS SN O R PR O SRV L (R B IT E
T Gkﬁ
w(C¢ )

—-q

xpml"‘
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R CEACCE? () + es.3,5(5).5, (1)) o1,
& o(s.y,5 ) + ooy K(8) 3, (NN TeDastp, 7 ) = oy
Pk 1=1 J J g~ n

by using the condition (SLG) and the bound given by (3.3.1). Thus

-1 ~
s F(x)2n(dx) = lim {o(%;) + nknk I (f(yzk(t)[w])
"(Cy ) ey cy 1%
-q -q

- f(y?“(r)[«»]) - ;“ LY £y y ¥.5)ds)

- (F,M 006D - T, o)) - N - 3“ L? (£ K.s)ds)

gl(y?k(rl))---gp(YTk(rp))gl(yzk(rl))---gp(y;k(rp))
dpnk(an)} =0

since the independence of the Wiener processes Wl and W2 implies that

wMl(t), W2(t)> = 0
where

M(e) = T, (00e]) - Fr K0eD) - S8 ,,k g‘l‘v’ £y K )ds
i=

which is a Pnk-martingale.

Thus  J F(A)°n(dA) = 0 for all F defined by (6.1) with f € 92(¢"),
"(Cq )
-q
p € N and Byoreen gp continuous and bounded mapping ¢' — R, and

ogrlg...grpgch. Since AO is the unique member of W(C; ) such that F(AO) =0,
-q




we get that np = 5A .
0

Remark 6.1. By Theorem 6.1, the possibly random measure p such that

u gﬁ‘u € w(Cg,) has been shown to be a non-random measure and in fact, u:ko.

Our result on propagation of chaos is presented in the next theorem.

Theorem 6.2. Under the conditions (SA), (SIC), (SCC), (SLG). (SJC). (SMC),

(SJC)' and (MCw) and with the coefficients b and ¢ satisfying (5.6) and (5.7),

4+qa

m  C for some a > O we get

and sup EHX?(O)H
n

(1) n = ako in w(v(Cy ).
-q

t t t,. .0, _1 3
(ii) If n, = Q(un) where un(w.§ ) == f I

P =1 X?(t,w)

and (X?(°), 1{i¢n} solves the system (3.2.1), then n; => 6) wzl for 0<t(T.
0

That is to say u; — A 1 in distribution and hence, in probability as well.

o't
Proof.: We have shown in Theorem 6.1 that nnk => bx . In fact, for any

0

convergent subsequence {un } of the sequence of empirical measures {un}. we

J
get from Theorem 6.1 that L => 6, . Therefore, the whole sequence n, weakly

converges to &, .
AO

To prove (ii), note that for all real-valued continuous, bounded functions

T
f on w(C¢.).

I f()n (dA) —
(Cy ) r(C )
-q -q

—-o

f(k)éxo(dx). (6.2)

©
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In particular, if f(A) = J g(y)d\(y) where for all y € Cl . gly) = g(yt)
T -
(Cp ) 4
- -q
for t fixed in [0,T], and g a continuous bounded function from ¢_q to R, then

f(\) is indeed a real-valued, continuous, bounded function on W(Cg.).

Therefore, (6.2) for this choice of f implies that n; => 5A w-l. Thus

Ot

u; — Aowzl as n — @ in probability since the limit is non-random.

Theorem 6.3: (a) For each T>O, let the conditions (SA), (SIC), (SCC), (SLG),
(SJC) and (SMC) hold. Then the system of SDE's (3.2.1) admits a weak solution
that is pathwise unique. That is, (3.2.1) has a unique strong solution in

(cy )™

(b) Assume the additional conditions (SJC)' and (MCw) for each T>O. If b and c
are as specified by (5.6) and (5.7)., the McKean-Vlasov equation posed by (5.3)

has a unique strong solution in C¢..

_ n
(c) In view of (a) and (b) above, define p_(-+,w) =L 31 so that its
n n n
i=1 Xi(' ,W)
law ﬁ; € w(w(C¢.)) n21l. Let Xb be the probability measure on Cj. that solves
the McKean-Vlasov equatinn posed by (5.3). If sup EHXT(O)Hf;a ¢ C for some
n

a > 0, then

n_=> 6 in m(w(Cy.))-

Proof: Part (a) follows by reading off the corresponding result in Kallianpur,
Mitoma and Wolpert [8].
(b) Let the conditions of Theorem 6.2 hold for each fixed T>0. Then, the

results in Section 5 and 6 hold in the interval [0,®). To see this, suppose

A

ko = (Y o) solves the McKean-Vlasov equation in the interval [O.To], and
A

A, = (Y l) solves the McKean-Vlasov equation in the interval [0,T], where

1
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T1>To. then, by the uniqueness of solutions to the McKean-Vlasov equation, we
get that the projection of Al on the interval [O.TO] must coincide with Ao.
Thus Al is an extension of AO in the above sense. Such an argument shows the

existence and uniqueness of solutions to the McKean-Vlasov equation (5.3) in
the interval [0.T] for any T>O.
Choose Tn = n, and the corresponding measures Anew(C¢.). Solve the

McKean-Vlasov equation (5.3). Then, the projective limit of {An} is a measure

AO € w(C¢.) that solves (5.3) for all t > O.

To prove part (c)., we make the following observations: For any positive

index k, i: CL € cI,
I

in Section 2 is equivalent to the weakest topology with respect to which the

is continuous. In fact, the topology on Cl. as given

above canonical inclusions are continuous. Therefore, we have

) _ T _ T
Claim: If Fa => T in w(w(C¢_k)). then Ta =>T in w(v(C¢.)).

Proof of the claim: First, note that the inclusion j: w(CI ) € W(Cg.) def ined
-k

xi_l is continuous. To see this, let {Aa} be a net in w(Cg } such
-k

by j(A)

that A => A in 1r(CT ). Therefore
a ¢_k

S fA, > Ve Cb(cg—k)'

CI A
~k -k

Let g € Cb(Cg.). The composition g<i is then in Cb(cl ). Also
-k

-1
i) gdkai = g idn  for all a

T T
C,. C
" o,

and




T T a
Cy- Cy-

so that

J gdA — [ gdA for all g € Cb(éT.).
a (+

cr ck

¢’ ¢

Therefore j is continuous.

Now let k be the inclusion from W(W(Cg )) C w(w(CI.)). Continuity of k
-k

can be proved by following step by step the proof of continuity of j. The
claim is thus shown.

Now part (c) is shown by observing that Theorem 6.2 part (i) implies that

T

n, =) GAO in w(w(C¢ )
-q
and hence
T
n, = 6Ao in W(W(C¢.)
by the claim shown above.
n = 5A0 in W(W(C¢.)

since the inclusionr w(w(Cg.)) Cc w(w(C¢.)) is also continuous. Note that m

and 6, are the projections of . and 6= on W(W(CF.)). Thus 7 => 6~ in
AO n AO ¢ n AO

w(w(CI.)).

Remark 6.3: The unique strong solutions mentioned in parts (a) and (b) of the
above theorem are in general ¢'-valued processes and cannot be guaranteed to
lie in a single Hilbert space ¢_j. This is so since the indices m and p vary
with T in the conditions.

§7. APPLICATION TO INTERACTING SYSTEMS OF NEURONS.

The random behavior of the voltage potential of a spatially distributed
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neuron has attracted considerable attention in neurophysiology and can be
modeled in the following set-up:
Let H be a separable Hilbert space and Tt be a strongly continuous
contraction semigroup on H with a densely defined, closed, negative-definite
generator A. In practice, H is usually taken to be L2(a.u) where 4 is the

membrane of a neuron and u is a suitable measure on X. If there exists r1>0 so

-r

that (I-A) 1 is Hilbert-Schmidt, then there exists {¢j}§_1. a CONS for H such
© -2r1
that - Ap, = A¢., j=1,2,... with 2 (I+A.) (o Let
NI M j=1 9
5 2 2
¢ = {p€H: 2 (1+Aj) r(¢.¢j)H { ® for any r>0}. Define on ¢ a family of
J=1
2 _ 3 2 2
increasing Hilbertian norms H'IIr with Hw"r = 3 (1+Rj) r(¢-¢j) and let ¢r
3=1
denote the completion of ¢ w.r.t. H-Mr. Since ¢r+r C ¢r is Hilbert-Schmidt,

1
it is easy to see that ¢ is a nuclear space. The semigroup {Tt)t>0 can be

written as follows. For any ¢ € ¢

[ ]
Te= 3

¢ ; lexp(—tkj)(qa.‘pj)o‘pJ € o.

The voltage potential is identified as the solution of the ¢'-valued SDE.
ch =A Xtdt + th

where A’ is the adjoint operator of A and Wt is a ¢'-Brownian motion with a
certain covariance function E(Wt,w)(wj.w) = (t A s)Q(¢.¥).

More generally, suppose At generates a strongly continuous contraction
evolution operators T(s,t), s{t on ¢. Assume the following conditions on A :
For any T and large enough m, there exists a p>m such that |A£u|_p$ K|u|_m for
all t<{T, and u€¢$. i.e., as continuous linear operators from ¢6 to ¢$. {At}th

are uniformly bounded.
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Then the following ¢'-valued SDE modeling the voltage potential of a

neuron has a unique solution:

dXt = AtXtdt + th
X

0 = §o

Moreover, the solution can be explicitly written as:

L] t 1 L]
Xt =T (O,t)fo + wt + fo AsTs,tWs ds.

denotes the adjoint operator of T_ .. Now, consider the system of

s, t

Here, Ts,t

n-interacting neurons whose voltage potentials are governed by the following

SDE:
&My = ax™ (o) + L 3 b (Rr). XB(e))de + dW, (t). i=1.2.....n (7.1)
i ti n j=1 t i 7 i TRy ’

X?(O) = § € &' where bt: ¢'xd’ — @' represents the interaction between neurons
and {Wi(t)}i=1 are independent copies of a ¢'-valued Brownian motion.

We require that the interaction bt: ¢'xp’' — @' satisfy the conditions
(SCC), (SLG), (SJC), (SMC), (SJC)' and (MCr) as in Theorem 6.2.

The existence and uniqueness theorem in Section 3 thus guarantees that

system (7.1) has a unique solution. The propagation of chaos in Section 6

n
asserts that the empirical distribution %- X6 (n) € r(Cg )} converges in
i=l X ~q
i

probability to a deterministic probability measure AO € W(Cg ) which is the
-q

law of the solution of the McKean-Vlasov equation corresponding to (7.1):

t

dX, = (A X, + b [X Aj])dt + aW .

where

b[x,xg] = i.b(x.y)dké(y)
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and ké is the law of Xt'
Thus the asymptotic behavior of a large system of neurons through
mean-interactions becomes asymptctically independent with the distribution

governed by the McKean-Vlasov equation (7.2).

8. CHAOTIC SYSTEMS
8.1 Exchangeable systems.

Till now, the initial random variables X?(O). 1{j<n have been assumed to
be i.i.d. random variables. We now relax this condition and assume that X?(O),
1{j¢n are exchangeable random variables for each n21. That is, the law of
X?(O) 1{j<n, denoted by “8 € w(¢')@n is a symmetric probability measure on
(o).

We call the symmetric measures ”8 uo—chaotic if the following condition

holds: For every integer k21 and fl""'fk € Cb(¢').
S by r J
lim fo(u).,....f (u)du (u) = 0 f.(u,)dp (u,) (8.1)
nw (¢)%0 101 k' Yk/ o'l 21 p 1M
where u =(u1.....un) € (¢')0n. and Ho is a probability measure on ¢'. We

assume that the measures “3 are uo-chaotic.

In the context of the neuorphysiological model described in section 7, the
assumption of exchangeability of the law of (X?(O).....Xﬁ(O)) for each n2l is
equivalent to saying that the particular order in which the neuronal membranes
are taken, is immaterial. This is so since the random variables
X?(t).....xz(t) for each t20 and n21 turn out to be exchangeable random
variables. The uo—chaoticity assumption is needed in showing the propagation
of chaos result. To see this, consider the simplest case where the drift and
diffusion coefficients are identically zero so that (8.1) itself becomes the

propagation of chaos statement.
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The results of the previous sections hold for the exchangeable model as

4+6

-m € C where C is a constant

well if we assume p,-chaoticity and that EIX](O)N

independent of n, and m is the index that appears in the conditions listed in

subsection 3.3.

8.2 Finite-dimensional systems

d s 94 d
By setting ¢ =R with IIxll” = 3 x| for each n21, =R =N¢&_ is seen
n n 1=1 i n>1 n

to be a nuclear space with its strong dual ¢' being isomorphic to Rd. Tn this
case, all the norms "."k' —o ¢ k { ® are one and the same, namely, the
Euclidean norm on Rd denoted by ll*ll. Therefore, the indices m,p,q etc. in our
conditions can and will be taken to be 1. The canonical maps Jm will not
appear in the conditions in this case. Besides, expressions such as
|Qa(t,u)|—m.—m will simply read as trace(aa*(t.u)). Also, the condition (SA)

is trivially seen to hold for the choice of ¢ = Rd.

The propagation of chaos
result for the finite-dimensional exchangeable system is given in the next

theorem:

Theorem 8.2.1. For each T > 0, let the conditions (SIC), (SCC), (SLG), (SJC)
and (SMC) hold. Let X?(O) 1{j<n be exchangeable random variables and let

uz = law of (X?(O)....,Xﬁ(O)) be uo-chaotic. Then,
a) The system of SDE's (3.2.1) has a unique strong solution in (C d)@n'
R
b) In addition, assume (SJC)' and (MCr) for each T > O. If the coefficients b
and c are as specified by (5.6) and (5.7), then the McKean~Vlasov equation

(5.3) has a unique strong solution in C d
R

c) Assume the conditions in part (b). Further, assume that there exists 5>0

such that Eux'l‘(O)u4+6 < C where C is independent of n. Then, in the notation
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of section 6

n = o_ in w(w(C ,)).
n X IRd

The above result enables us to compare our results with those of Sznitman [16].

The conditions made by Sznitman are the following:

(i) The initial random variables X?(O).....Xﬁ(O) are Rd—valued exchangeable

random variables and are bounded.

(ii) "2 = law of (X?(O)....,Xg(O)) on (IRd)on are uo—chaotic. where Mo is a

probability measure on Rd

(iii) The drift and diffusion coefficients are uniformly bounded and satisfy

uniform Lipschitz conditions in the space and time variables.
(iv) The covariance form Q is the identity matrix.

In the next paragraph the conditions (i) through (iv) are compared with those
that appear in Theorem 8.2.1.

First (SIC) and the moment condition introduced in part (c) of Theorem
8.2.1 are satisfied since (i) says that the initial variables are bounded.
(SCC) is verified as follows:

For u,v € RS, 0St<T, and h(t,u,v) = o(t.u) + c(t.u,v),
|2a(t.,u)+u + 2b(t,u,v)-u + tr(hh*(t.u,v))l
< 2llall_lull + 20ibli_llull + trace(hh™(t,u,v))
< 8(1+un?)

by using the uniform boundedness of the coefficients and condition (iv).

The verifications of (SLG) and (SJC) given the Conditions (i) to (iv) are
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simple and hence left to the reader. (SMC) can be verified by using Lipschitz
continuity of the coefficients. (SJC) and (MCw) are obtained by continuity and
boundedness of the coefficients. Thus, our set of conditions for the
propagation of chaos is weaker than that imposed in the finite-dimensional
set-up by Sznitman [16]. The finite-dimensional result of Leonard [11] is
close in spirit to Theorem 8.2.1 and hence, a comparison of the two is left to

the reader.
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